Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Microbiol Spectr ; 10(5): e0215222, 2022 Oct 26.
Article in English | MEDLINE | ID: covidwho-2038253

ABSTRACT

Monoclonal antibodies (MAbs) targeting the Spike glycoprotein of SARS-CoV-2 is a key strategy to prevent severe COVID-19. Here, the efficacy of two monoclonal antibody bitherapies against SARS-CoV-2 was assessed on 92 patients at high risk of severe COVID-19 between March and October 2021 (Bichat-Claude Bernard Hospital, Paris, France). Nine patients died despite appropriate management. From 14 days following treatment initiation, we observed a slower viral load decay for patients treated with the bitherapy Bamlanivimab/Etsevimab compared to the Casirivimab/Imdevimab association therapy (P = 0.045). The emergence of several mutations on the Spike protein known to diminish antiviral efficacy was observed from 1 to 3 weeks after infusion. The Q493R mutation was frequently selected, located in a region of joint structural overlap by Bamlanivimab/Etsevimab antibodies. Despite that this study was done on former SARS-CoV-2 variants (Alpha and Delta), the results provide new insights into resistance mechanisms in SARS-CoV-2 antibodies neutralization escape and should be considered for current and novel variants. IMPORTANCE Monoclonal antibody bitherapies (MAbs) are commonly prescribed to treat severe SARS-CoV-2-positive patients, and the rapid growth of resistance mutation emergence is alarming globally. To explore this issue, we conducted both clinical and genomic analyses of SARS-CoV-2 in a series of patients treated in 2021. We first noticed that the two dual therapies prescribed during the study had different kinetics of viral load decay. Rapidly after initiation of the treatments, resistance mutations emerged in the interface between the MAbs and the target Spike glycoprotein, demonstrating the importance to continuously screen the viral genome during treatment course. Taken together, the results highlight that viral mutations may emerge under selective pressure, conferring a putative competitive advantage, and could rapidly spread, as observed for the Omicron variant.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus , Antibodies, Monoclonal/therapeutic use , Neutralization Tests , Antibodies, Viral , Antiviral Agents/therapeutic use , Antibodies, Neutralizing
2.
Biomedicines ; 10(4)2022 Mar 23.
Article in English | MEDLINE | ID: covidwho-1834700

ABSTRACT

High-density lipoproteins (HDLs) have multiple endothelioprotective properties. During SARS-CoV-2 infection, HDL-cholesterol (HDL-C) concentration is markedly reduced, and studies have described severe impairment of the functionality of HDL particles. Here, we report a multi-omic investigation of the first administration of recombinant HDL (rHDL) particles in a severe COVID-19 patient in an intensive care unit. Plasma ApoA1 increased and HDL-C decreased after each recombinant HDL injection, suggesting that these particles were functional in terms of reverse cholesterol transport. The proportion of large HDL particles also increased after injection of recombinant HDL. Shotgun proteomics performed on HDLs isolated by ultracentrifugation indicated that ApoA1 was more abundant after injections whereas most of the pro-inflammatory proteins identified were less abundant. Assessment of Serum amyloid A-1, inflammatory markers, and cytokines showed a significant decrease for most of them during recombinant HDL infusion. Our results suggest that recombinant HDL infusion is feasible and a potential therapeutic strategy to be explored in COVID-19 patients.

3.
Biomedicines ; 10(4):754, 2022.
Article in English | MDPI | ID: covidwho-1762667

ABSTRACT

High-density lipoproteins (HDLs) have multiple endothelioprotective properties. During SARS-CoV-2 infection, HDL-cholesterol (HDL-C) concentration is markedly reduced, and studies have described severe impairment of the functionality of HDL particles. Here, we report a multi-omic investigation of the first administration of recombinant HDL (rHDL) particles in a severe COVID-19 patient in an intensive care unit. Plasma ApoA1 increased and HDL-C decreased after each recombinant HDL injection, suggesting that these particles were functional in terms of reverse cholesterol transport. The proportion of large HDL particles also increased after injection of recombinant HDL. Shotgun proteomics performed on HDLs isolated by ultracentrifugation indicated that ApoA1 was more abundant after injections whereas most of the pro-inflammatory proteins identified were less abundant. Assessment of Serum amyloid A-1, inflammatory markers, and cytokines showed a significant decrease for most of them during recombinant HDL infusion. Our results suggest that recombinant HDL infusion is feasible and a potential therapeutic strategy to be explored in COVID-19 patients.

4.
Virology ; 566: 114-121, 2022 01.
Article in English | MEDLINE | ID: covidwho-1556999

ABSTRACT

This communication summarizes the presentations given at the 1st international conference of the World Society for Virology (WSV) held virtually during 16-18 June 2021, under the theme of tackling global viral epidemics. The purpose of this biennial meeting is to foster international collaborations and address important viral epidemics in different hosts. The first day included two sessions exclusively on SARS-CoV-2 and COVID-19. The other two days included one plenary and three parallel sessions each. Last not least, 16 sessions covered 140 on-demand submitted talks. In total, 270 scientists from 49 countries attended the meeting, including 40 invited keynote speakers.


Subject(s)
COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , Congresses as Topic , SARS-CoV-2 , Humans , Societies, Scientific , Virology
6.
Viruses ; 13(8)2021 08 19.
Article in English | MEDLINE | ID: covidwho-1367917

ABSTRACT

An Emergency Use Authorization was issued in the United States and in Europe for a monoclonal antibody monotherapy to prevent severe COVID-19 in high-risk patients. This study aimed to assess the risk of emergence of mutations following treatment with a single monoclonal antibody. Bamlanivimab was administered at a single dose of 700 mg in a one-hour IV injection in a referral center for the management of COVID-19 in France. Patients were closely monitored clinically and virologically with nasopharyngeal RT-PCR and viral whole genome sequencing. Six patients were treated for a nosocomial SARS-CoV-2 infection, all males, with a median age of 65 years and multiple comorbidities. All patients were infected with a B.1.1.7 variant, which was the most frequent variant in France at the time, and no patients had E484 mutations at baseline. Bamlanivimab was infused in the six patients within 4 days of the COVID-19 diagnosis. Four patients had a favorable outcome, one died of complications unrelated to COVID-19 or bamlanivimab, and one kidney transplant patient treated with belatacept died from severe COVID-19 more than 40 days after bamlanivimab administration. Virologically, four patients cleared nasopharyngeal viral shedding within one month after infusion, while two presented prolonged viral excretion for more than 40 days. The emergence of E484K mutants was observed in five out of six patients, and the last patient presented a Q496R mutation potentially associated with resistance. CONCLUSIONS: These results show a high risk of emergence of resistance mutants in COVID-19 patients treated with monoclonal antibody monotherapy.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , COVID-19/virology , SARS-CoV-2/genetics , Adult , Aged , Aged, 80 and over , Antibodies, Monoclonal, Humanized/administration & dosage , Antiviral Agents/administration & dosage , COVID-19/complications , Comorbidity , Drug Resistance, Viral/genetics , France , Humans , Male , Middle Aged , Mutation , SARS-CoV-2/drug effects , Severity of Illness Index
9.
Int J Infect Dis ; 98: 290-293, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-701793

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been identified as the virus responsible for the coronavirus disease 2019 (COVID-19) outbreak worldwide. Data on treatment are scare and parallels have been made between SARS-CoV-2 and other coronaviruses. Remdesivir is a broad-spectrum antiviral with efficient in vitro activity against SARS-CoV-2. Evidence of clinical improvement in patients with severe COVID-19 treated with remdesivir is controversial. The aim of this study was to describe the clinical outcomes and virological monitoring of the first five COVID-19 patients admitted to the intensive care unit of Bichat-Claude Bernard University Hospital, Paris, France, for severe pneumonia related to SARS-CoV-2 and treated with remdesivir. Quantitative reverse transcription PCR was used to monitor SARS-CoV-2 in blood plasma and the lower and upper respiratory tract. Among the five patients treated, two needed mechanical ventilation and one needed high-flow cannula oxygen. A significant decrease in SARS-CoV-2 viral load in the upper respiratory tract was observed in most cases, but two patients died with active SARS-CoV-2 replication in the lower respiratory tract. Plasma samples were positive for SARS-CoV-2 in only one patient. Remdesivir was interrupted before the initialy planned duration in four patients, two because of alanine aminotransferase elevations (3 to 5 normal range) and two because of renal failure requiring renal replacement. This case series of five COVID-19 patients requiring intensive care unit treatment for respiratory distress and treated with remdesivir, highlights the complexity of remdesivir use in such critically ill patients.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Adenosine Monophosphate/adverse effects , Adenosine Monophosphate/therapeutic use , Adult , Aged , Aged, 80 and over , Alanine/adverse effects , Alanine/therapeutic use , Antiviral Agents/adverse effects , Antiviral Agents/therapeutic use , Betacoronavirus/drug effects , Betacoronavirus/physiology , COVID-19 , Coronavirus Infections/virology , Female , France , Hospitalization , Humans , Male , Pandemics , Pneumonia, Viral/virology , SARS-CoV-2 , Viral Load/drug effects , Withholding Treatment
10.
Am J Trop Med Hyg ; 103(3): 955-959, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-671152

ABSTRACT

The COVID-19 pandemic is among the deadliest infectious diseases to have emerged in recent history. As with all past pandemics, the specific mechanism of its emergence in humans remains unknown. Nevertheless, a large body of virologic, epidemiologic, veterinary, and ecologic data establishes that the new virus, SARS-CoV-2, evolved directly or indirectly from a ß-coronavirus in the sarbecovirus (SARS-like virus) group that naturally infect bats and pangolins in Asia and Southeast Asia. Scientists have warned for decades that such sarbecoviruses are poised to emerge again and again, identified risk factors, and argued for enhanced pandemic prevention and control efforts. Unfortunately, few such preventive actions were taken resulting in the latest coronavirus emergence detected in late 2019 which quickly spread pandemically. The risk of similar coronavirus outbreaks in the future remains high. In addition to controlling the COVID-19 pandemic, we must undertake vigorous scientific, public health, and societal actions, including significantly increased funding for basic and applied research addressing disease emergence, to prevent this tragic history from repeating itself.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections/etiology , Pneumonia, Viral/etiology , Animals , Betacoronavirus/classification , Betacoronavirus/genetics , COVID-19 , Chiroptera/virology , Coronavirus Infections/prevention & control , Coronavirus Infections/transmission , Humans , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Pneumonia, Viral/transmission , Public Health , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL